
Efficient Nondestructive Equality Checking for Trees and Graphs

Michael D. Adams and R. Kent Dybvig
Indiana University Computer Science Department

{adamsmd,dyb}@cs.indiana.edu

Abstract
The Revised6 Report on Scheme requires its generic equivalence
predicate, equal?, to terminate even on cyclic inputs. While the
terminating equal? can be implemented via a DFA-equivalence
or union-find algorithm, these algorithms usually require an addi-
tional pointer to be stored in each object, are not suitable for mul-
tithreaded code due to their destructive nature, and may be unac-
ceptably slow for the small acyclic values that are the most likely
inputs to the predicate.

This paper presents a variant of the union-find algorithm for
equal? that addresses these issues. It performs well on large and
small, cyclic and acyclic inputs by interleaving a low-overhead al-
gorithm that terminates only for acyclic inputs with a more general
algorithm that handles cyclic inputs. The algorithm terminates for
all inputs while never being more than a small factor slower than
whichever of the acyclic or union-find algorithms would have been
faster. Several intermediate algorithms are also presented, each of
which might be suitable for use in a particular application, though
only the final algorithm is suitable for use in a library procedure,
like equal?, that must work acceptably well for all inputs.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—data types and struc-
tures; G.2.2 [Discrete Mathematics]: Graph Theory—graph algo-
rithms

General Terms Algorithms, Performance

Keywords equality, union-find, DFA equivalence, eq hash tables,
Scheme

1. Introduction
The Revised6 Report on Scheme (R6RS) changed the semantics of
equal? so that it is now required to terminate even when given
cyclic inputs and to return true if and only if the (possibly infi-
nite) unfoldings of its arguments into regular trees are equal as or-
dered trees (Sperber et al. 2007). This is the same as determining
whether the arguments are equivalent when interpreted as deter-
ministic finite automata (DFAs) (Clinger 2006). Thus, it is possi-
ble to implement equal? using an algorithm designed to test for

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICFP’08, September 22–24, 2008, Victoria, BC, Canada.
Copyright c© 2008 ACM 978-1-59593-919-7/08/09. . . $5.00

the equivalence of DFAs, e.g., Hopcroft and Karp’s DFA equiv-
alence algorithm (1971), or one of the closely related union-find
algorithms (Galler and Fisher 1964; Galil and Italiano 1991).

A complication is that union-find algorithms require a pointer-
sized cell to be set aside in each node of the tree or graph, and they
update this node as the algorithm progresses. This is unsuitable in
multitasking or multithreaded programs, in which multiple threads
of execution may be performing concurrent equality checks on the
same values.

Moreover, adding an additional cell to each object to support
just this one operation is excessively expensive. For pairs, which
contain only two cells to start with, the addition of a cell increases
the size by 50% or even 100% given typical 64-bit allocation align-
ment restrictions (to support objects containing double-precision
floating-point numbers) on 32-bit machines. In less memory-
efficient implementations, where pairs also include a header word,
the overhead of an additional word would be less but still signifi-
cant.

A solution to both problems is to associate the necessary addi-
tional cell with each value, as needed, in a separate “eq” hash table,
with a fresh hash table allocated for each equal? operation.

Unfortunately, when the overhead of union-find (in comparison
to a simple tree-equality check) is combined with the additional
hash-table overhead, the resulting algorithm becomes unsuitably
slow for trees, i.e., inputs without shared structure or cycles, which
are likely to be the most common inputs to equal?.

To ameliorate this problem, one can use an inexpensive tree-
equality pre-check, with a bound on the number of recursive calls
to avoid infinite regression when cyclic inputs are provided, and
switch to the slower union-find algorithm when the bound is ex-
ceeded (Clinger 2006).

Unfortunately, no value for the bound on the tree-equality pre-
check works well for all inputs: a large bound penalizes small cyclic
graphs or dags with lots of shared structure, and a small bound
penalizes larger tree structures.

Our solution to this problem is an algorithm that interleaves an
inexpensive tree-equality check with a hash-table-based union-find
algorithm in order to achieve good performance for both trees and
graphs. Although the idea is simple, several subtle points must be
addressed to avoid poor worst-case behavior. This paper presents
the algorithm and its implementation, establishes that its asymp-
totic behavior is the same as the union-find algorithm, and presents
benchmarks showing that it is nearly as fast in most cases as
whichever is the faster of the tree-equality and union-find algo-
rithms for both tree inputs and inputs with substantial shared struc-
ture or cycles. The benchmarks also show that its worst-case behav-
ior is within a small constant factor of the tree-equality and union-
find algorithms.

Section 2 describes the new equal? procedure in more detail
and gives a few examples of its use. Section 3 presents an imple-
mentation of a straight hash-table-based union-find algorithm, an-
alyzes its worst-case behavior, and shows how it performs on sev-

179

a b

a ba b

Figure 1. Two equal acyclic values

eral kinds of sample input. Section 4 adds an inexpensive, bounded
tree-equality pre-check and shows that this helps for some inputs
but not others. Section 5 presents one version of our interleaved al-
gorithm and shows that this largely addresses the problems with the
other algorithms. Section 6 presents the final version of our inter-
leaved algorithm and shows that it has better worst-case behavior
and is usually faster, especially for small acyclic inputs. Section 7
discusses related work, and Section 8 presents conclusions.

2. The equal? procedure
The Revised6 Report equal? procedure accepts two arbitrary ar-
guments and returns true (#t) “if and only if the (possibly infinite)
unfoldings of its arguments into regular trees are equal as ordered
trees” (Sperber et al. 2007). Otherwise, it returns false (#f).

In essence, two values are equivalent, in the sense of equal?,
if the structure of the two values cannot be distinguished by any
composition of pair and vector accessors along with the eqv?,
string=?, and bytevector=? procedures for comparing atomic
data when applied to the leaves of the values. For example, the
values of the two expressions below are equal because they have
exactly the same structure and same values at the leaves.

(cons ’a ’b)
(cons ’a ’b)

The values of the expressions below are also equal:

(cons (cons ’a ’b) (cons ’a ’b))
(let ([x (cons ’a ’b)]) (cons x x))

even though the former consists of three pairs while the latter con-
sists of only two, as illustrated in Figure 1, because any composi-
tion of car and cdr performed in parallel on the two values yields
the same (equal) structures.

On the other hand, the values of the following expressions are
not equal:

(cons (cons ’a ’b) (cons ’a ’c))
(let ([x (cons ’a ’b)]) (cons x x))

since they differ at one leaf. The values of the following are also
unequal:

(cons (cons ’a ’b) (cons ’a ’b))
(cons ’a ’b)

since they differ in basic structure.

a bc

bc

b

Figure 2. Values no longer equal after mutation

While two values may be considered equal even if they do not
have identical internal structure, they can be distinguished, and
hence determined not to have identical internal structure, by some
parallel mutation that would not distinguish values with identical
internal structure, as illustrated by the following.

(define x (cons (cons ’a ’b) (cons ’a ’b)))
(define y (let ([x (cons ’a ’b)]) (cons x x)))

(equal? x y) ⇒ #t

(set-car! (car x) ’c)
(set-car! (car y) ’c)

(equal? x y) ⇒ #f

Prior to mutation, the values of x and y are identical to the equal but
structurally distinct values illustrated in Figure 1. Their structures
after mutation, which are not equal, are illustrated in Figure 2.

The examples so far are all consistent with the Revised5 Report
semantics for equal?, which might be defined as follows:

(define (r5rs-equal? x y)
(let e? ([x x] [y y])
(cond
[(eq? x y) #t]
[(pair? x)
(and (pair? y)

(e? (car x) (car y))
(e? (cdr x) (cdr y)))]

[(vector? x)
(and (vector? y)
(let ([n (vector-length x)])
(and (= (vector-length y) n)
(let f ([i 0])
(or (= i n)

(and
(e? (vector-ref x i)

(vector-ref y i))
(f (+ i 1))))))))]

[(string? x)
(and (string? y) (string=? x y))]
[else (eqv? x y)])))

In fact, the Revised6 Report semantics for equal? coincides with
the Revised5 Report equal? semantics (Kelsey et al. 1998) for

180

Figure 3. Two equal cyclic values

all inputs upon which the latter is required to terminate, i.e., all
directed, acyclic graphs. They differ for cyclic graphs: behavior
of the Revised5 Report equal? on cyclic graphs is unspecified
(and the implementation above will recur indefinitely), while the
Revised6 Report equal? is required to terminate with an answer
consistent with its behavior on acyclic graphs. For example, the
cyclic values of the following expressions are equal.

(let ([x (cons ’x ’x)])
(set-car! x x)
(set-cdr! x x)
x)

(let ([x (cons ’x ’x)])
(set-car! x x)
(set-cdr! x x)
(cons x x))

The structure of these values is shown in Figure 3.

3. Straightforward union-find
As stated in Section 1, the problem of determining whether two
values are equal per the R6RS semantics is essentially equivalent to
the problem of determining whether two DFAs are equivalent. We
simply consider the (pair and vector) nodes in our directed graph
to be the states of the DFA, the links from one node to another to
be the transitions of the DFA, and the accessor names (i.e., car
and cdr) or ordinals (i.e., vector indices) to be the symbols of the
DFA’s alphabet. The start state of each graph is the root node of the
graph, and the final states are the atomic leaves. DFA equivalence
can be established via the Hopcroft and Karp DFA equivalence
algorithm (1971) or via a union-find algorithm (Tarjan 1975).

Our first version of R6RS equal? is thus a straightforward cod-
ing of the “splitting” union-find algorithm recommended by Tarjan
and van Leeuwen (1984), with an “eq” hash table to associate the
required additional cells with the nodes visited by the algorithm.
The algorithm traverses the nodes of the graph (a.k.a. states of the
DFA), marking equivalent any two nodes reached by the algorithm
if they have the same surface structure, then recurring on the sub-
graphs directly reachable from the two nodes. The equality check
fails if two nodes reached during this process have different struc-

ture (say if only one of the two is a pair) or if two leaves differ.
If a cycle exists in an equal structure, the algorithm sees that they
have already been marked equivalent and does not descend again
into the subgraphs, thus assuring termination.

Because the equivalence relationship is transitive, the use of
equivalence classes rather than pairwise equivalence flags or links
sometimes allows the algorithm to terminate more quickly, since
it does not recur into the subgraphs of two nodes that are both
equivalent to a third node.

3.1 Implementation
The code shown below for the union-find equal? algorithm creates
a hash table used to record equivalence classes, then initiates a
recursive equality check.

(define (uf-equal? x y)
(let ([ht (make-eq-hashtable)])
(define (e? x y)
(cond
[(eq? x y) #t]
[(pair? x)
(and (pair? y)
(or (union-find ht x y)

(and (e? (car x) (car y))
(e? (cdr x) (cdr y)))))]

[(vector? x)
(and (vector? y)
(let ([n (vector-length x)])
(and (= (vector-length y) n)
(or (union-find ht x y)

(let f ([i 0])
(or (= i n)

(and (e? (vector-ref x i)
(vector-ref y i))

(f (+ i 1)))))))))]
[(string? x)
(and (string? y) (string=? x y))]
[else (eqv? x y)]))

(e? x y)))

Each step of the recursion checks to see if the inputs are pointer-
equivalent, i.e., “eq,” to avoid recurring into the subgraphs of identi-
cal values. If not, it handles recursively the cases where both values
are pairs or both values are vectors of the same length. It defers to
string=? for strings and to eqv? for other atomic values1.

Prior to recurring on the elements of pairs or vectors, the code
checks for and records the equivalence of the two pairs or vectors
via the union-find procedure. In the case where union-find
returns false, uf-equal? recurs on the individual elements of the
pair or vector in the natural way.

Since we need to record as equivalent any two inputs if they are
not already known to be equivalent, the union-find procedure,
shown in Figure 4, combines the union and find operations of the
union-find algorithm, which is less expensive than doing the two
operations separately. The procedure returns true if the two values
it receives are already in the same equivalence class; otherwise,
it destructively merges the equivalence classes and returns false.
The union-find procedure performs the same operation as the
contingent-unite algorithm of Tarjan and van Leeuwen (1984),
though it uses a more direct merger of the union and find operations
that involves fewer side effects and, for our purposes, appears to be
as efficient in practice.

1 It should also defer to bytevector=? for bytevectors, but we have omit-
ted that case from this and the other algorithm variants.

181

(define (union-find ht x y)
(define (find b)
(let ([n (unbox b)])
(if (box? n)

(let loop ([b b] [n n])
(let ([nn (unbox n)])
(if (box? nn)

(begin
(set-box! b nn)
(loop n nn))

n)))
b)))

(let ([bx (eq-hashtable-ref ht x #f)]
[by (eq-hashtable-ref ht y #f)])

(if (not bx)
(if (not by)

(let ([b (box 1)])
(eq-hashtable-set! ht x b)
(eq-hashtable-set! ht y b)
#f)

(let ([ry (find by)])
(eq-hashtable-set! ht x ry)
#f))

(if (not by)
(let ([rx (find bx)])
(eq-hashtable-set! ht y rx)
#f)

(let ([rx (find bx)] [ry (find by)])
(or (eq? rx ry)

(let ([nx (unbox rx)]
[ny (unbox ry)])

(if (> nx ny)
(begin
(set-box! ry rx)
(set-box! rx (+ nx ny))
#f)

(begin
(set-box! rx ry)
(set-box! ry (+ ny nx))
#f)))))))))

Figure 4. The union-find procedure

Equivalence classes are represented as chains of single-celled
boxes, with the last box of each chain serving as the representa-
tive of the class. The “box” data type can be declared as a record
type or defined via operations on pairs as shown below.

(define box? pair?)
(define box list)
(define unbox car)
(define set-box! set-car!)

To implement the weighted union rule (Tarjan 1975) of the union-
find algorithm, the representative holds the size of the class.

Four cases are handled separately by the algorithm: (1) neither
input value has been seen before, (2) the first has been seen but
not the second, (3) the second has been seen but not the first, and
(4) both have been seen. In the first case, we need to associate both
values with a box to hold the equivalence class. Since both val-
ues will be placed in the same equivalence class, we can get away
with creating a single box rather than two separate boxes, reducing
memory-allocation and memory-reference overhead and possibly
reducing overall chain lengths. In the second and third cases, which
are mirror images, the new value is associated with the representa-

tive of the previously seen value, effectively adding the new value
to the existing equivalence class without any allocation overhead
(beyond that incurred by the hash-table mechanism) and without
the need to increment the class’s size. The representative is located
via the find procedure, which employs a form of path compres-
sion that Tarjan and van Leeuwen refer to as splitting (1984). With
splitting, each box in the chain becomes linked to the one two be-
yond it rather than to the representative, allowing the code to avoid
a second traversal without affecting the asymptotic behavior.

The fourth case is the most involved. In this case, the code
compares the representatives of the two input values. If they are
pointer-equivalent, the values are already in the same class and the
code returns true. Otherwise, the representative of the smaller class
becomes linked to the representative of the larger class and the size
is updated to reflect the size of the newly joined class.

The hash-table mechanism used by our implementation of the
union-find algorithm is an implementation of the R6RS “eq” hash-
table interface. It bases the hash code for an object on its address
in memory. Since objects may move during a garbage collection,
their hash codes may change over time. The hash-table mechanism
handles this efficiently by rehashing only the objects that have
actually moved since the last access (Ghuloum and Dybvig 2007).

3.2 Analysis
In order to determine a tight bound on the number of calls to e?, we
first establish that the number of calls to e? is bounded by nm+1,
where n is the total number of non-leaf nodes in the two inputs
and m is the out-degree of the largest node, i.e., the length of the
largest vector, or two if we have only pairs and vectors of length
two or less. We do so as follows. At the outset, each node virtually
resides in its own equivalence class, so there are exactly n distinct
equivalence classes. Each union-find operation that returns false
merges two distinct equivalence classes. This can happen at most n
times before all of the classes have been merged into a single class.
Furthermore, recursive calls to e? occur only when union-find
returns false. At most m recursive calls can be made in each of
these cases (one for each element of the pair or vector). Thus, we
can have at most mn recursive calls to e? and at most mn+1 calls
total including the initial call.

We can establish a tighter bound by observing that e? can
recur only if its inputs are both pairs or both vectors of the same
length. The n non-leaf nodes consist of p pairs and vi vectors of
each length i represented in the input, for some p and vi. By the
reasoning above, we can generate at most 2p recursive calls due to
the pairs, and ivi recursive calls due to vectors of length i. 2p and
ivi also happen to be the total numbers of out edges from pairs and
vectors of length i, respectively. Summed together, they represent
the total number of edges in the two inputs. Thus, the bound on the
number of calls to e? is actually l + 1, where l is the total number
of edges.

The amortized cost of each union-find call, with weighted
union and path compression as implemented above, is O(α(n))
where α is the inverse Ackermann function and n is again the num-
ber of nodes (Tarjan and van Leeuwen 1984). Hash tables exhibit
amortized constant time behavior under assumptions maintained by
the underlying implementation and so do not affect the bound. Thus
the overall cost of the algorithm is O(lα(n)). The value of the
inverse Ackermann function is no more than 4 for all reasonable
values of n (Tarjan and van Leeuwen 1984) (in particular, for the
maximum number of nodes that can fit in a 32- or 64-bit memory
space), so the cost is effectively O(l).

This bound assumes that leaves can be compared in constant
time, which is the case for most values but not for strings, bytevec-
tors, and bignums.

182

...

Figure 5. Degenerate DAG

3.3 Benchmarks
We compared the run times of uf-equal?2 and r5rs-equal?
on a variety of acyclic inputs: lists and inverted lists of vari-
ous lengths along with balanced binary trees, degenerate directed
acyclic graphs (dags), and random dags of various depths. Inverted
lists are like lists but are linked through the car rather than cdr field.
Degenerate dags consist of a chain of pairs, each connected to the
next through the car and cdr fields, as shown in Figure 5. In each
case, the values being compared are equal but do not share any
structure; comparing unequal values would be the essentially the
same as comparing smaller equal values. Bar charts showing the
results of all benchmark runs are shown in Figures 8 through 14 of
Section 6.2. For purposes of the current comparison, only the first
two bars of Figures 8 through 12 are relevant.

As one might expect, uf-equal? performs poorly relative to
r5rs-equal? on lists, inverted lists, trees, and small dags. Indeed,
uf-equal? outperforms r5rs-equal? only for larger dags, where
the run time of the latter eventually goes off the scale of the graphs
because it treats dags as if they were in their exponentially ex-
panded tree forms. We gave up running r5rs-equal? on degen-
erate dags larger than depth 16, so no results are shown for it at
depths 32 and 64.

While uf-equal? runs faster for larger dags and can handle
cyclic structures upon which r5rs-equal? does not terminate, it
runs slower for lists and trees. In particular, it runs much slower for
the small values that are likely to be common inputs to equal?.
We would prefer a solution that maintains the useful properties of
uf-equal? without the performance hit for these smaller values.

4. Union-find with pre-check
As mentioned in the introduction, a way to improve performance on
smaller values is to perform a bounded tree-equality pre-check on
the inputs before deferring to the slower union-find algorithm. The
precheck/uf-equal? procedure defined below performs such a
check, using the pre? procedure, whose definition is given in
Figure 6.

2 In this and subsequent tests, the helpers were made local to the procedure
to allow the compiler more latitude for optimization, and fixnum arithmetic
operators were used in place of the generic operators. All tests were run
in Chez Scheme Version 7.4 running as a 32-bit process under the 64-
bit Gnu/Linux operating system on a lightly loaded 2.6Ghz AMD Opteron
processor with 4GB of memory.

(define (pre? x y k)
(cond
[(eq? x y) k]
[(pair? x)
(and (pair? y)
(if (<= k 0)

k
(let ([k (pre? (car x) (car y) (- k 1))])
(and k (pre? (cdr x) (cdr y) k)))))]

[(vector? x)
(and (vector? y)
(let ([n (vector-length x)])
(and (= (vector-length y) n)
(let f ([i 0] [k k])
(if (or (= i n) (<= k 0))

k
(let ([k (pre? (vector-ref x i)

(vector-ref y i)
(- k 1))])

(and k (f (+ i 1) k))))))))]
[(string? x)
(and (string? y) (string=? x y) k)]
[else (and (eqv? x y) k)]))

Figure 6. The pre? procedure

(define k0 400)
(define (precheck/uf-equal? x y)
(let ([k (pre? x y k0)])
(and k (or (> k 0) (uf-equal? x y)))))

The pre? procedure returns false to signify that the values are non-
equal, a positive integer to signify that the values are equal, and
zero to signify that the equality of the two values could not be
determined without exceeding the given bound. The code for pre?
is similar to the code for r5rs-equal?, except that it checks and
decrements the bound argument, k, each time it encounters a pair
and for each vector element. The value 400 for the bound, k0, was
determined through experimentation, as described in Section 4.2.

4.1 Analysis
The worst-case bound for this version of the algorithm is essentially
the same as for the straight union-find algorithm; the pre-check
adds only constant overhead.

4.2 Benchmarks
We compared precheck/uf-equal? with r5rs-equal? and
uf-equal? on the same set of benchmarks as before, and we sepa-
rately compared precheck/uf-equal? with uf-equal? on a set
of cyclic inputs, including both random cyclic graphs and graphs
constructed specifically to exercise the case where two non-unit
equivalence classes must be merged by the union-find helper.
Again, the results are shown in Figures 8 through 14 of Section 6.2.

As expected, precheck/uf-equal? reduces the run times for
small inputs to levels approaching those of r5rs-equal?, but does
not help larger lists and trees, i.e., those whose size exceeds the
k0 bound. A larger bound would improve the performance for
larger inputs, but precheck/uf-equal? already runs slower than
uf-equal? for larger dags and for cyclic values. The difference
may be acceptable with k0 set to 400, but not for much larger
values of k0. Indeed, we selected 400 for the value of k0 because
we felt that higher values penalized cyclic inputs to an unacceptable
degree.

183

5. Interleaved algorithm
For comparisons of large lists and trees, the preceding algorithm
is actually slower than the straight union-find algorithm, be-
cause the pre-check effort is wasted. It is also much slower than
r5rs-equal? for such inputs, because the union-find algorithm
adds overhead without any compensating benefits. Yet, we cannot
use r5rs-equal? because it does not handle cyclic inputs, and we
cannot determine a priori which algorithm to use since we do not
know until we traverse the inputs how large they are and whether
they contain cycles.

Our solution to this problem is to interleave the tree-equality
checking algorithm with the union-find algorithm. We briefly
considered independent coroutines, but abandoned the idea because
of the overhead involved and also because a tighter interleaving
can sometimes result in beneficial synergy, since the tree-shaped
portions of a cyclic structure may be tested less expensively with a
tree-equality check than with the slower union-find algorithm.

The interleave-equal? procedure defined below, along with
the interleave? procedure shown in Figure 7 implements the
interleaved algorithm.

(define k0 400)
(define kb -40)
(define (interleave-equal? x y)
(interleave? x y k0))

The interleave? procedure is passed the two inputs plus the
initial value, k0, for its bound argument, k. If k is greater than zero,
interleave? uses its fast? helper, which is similar to pre?. If
k is less than or equal to zero but greater than the lower bound on
k, kb, interleave? defers to its slow? helper, which is similar to
uf-equal?, but augmented to decrement k when appropriate. If k
is exactly kb, interleave? restarts k at a random value between
0 and twice k. The random restart value reduces the likelihood of
repeatedly tripping on worst-case behavior in cases where the sizes
of the input graphs happen to be related to the chosen bounds in a
bad way.

Because the algorithm starts out with k greater than zero and
may terminate before k ever reaches zero, interleave? puts off
creating the hash table until it is first needed, with the help of the
call-union-find procedure.

When union-find returns true, slow? returns 0 instead of the
current value of k, on the theory that if one equivalence is found,
more are likely to be found, so we should give slow? more time in
which to find them.

5.1 Analysis
To establish a bound on this algorithm, we first assume that
interleave? starts in “slow” mode, i.e., k starts out at 0 rather
than k0, then discuss what happens when k starts out at k0.

Let r be the number of calls to union-find that return false. As
discussed in Section 3.2, this can happen at most n times (where,
again, n is the number of nodes), so r ≤ n. Because we perform
at least −kb calls to slow? for which union-find returns false
before making each set of at most 2k0 calls to fast?, the number
of calls f to fast? is at most 2(k0/kb)r. Since r ≤ n, it follows
that f ≤ 2(k0/kb)n.

What remains is to count the number of calls s to slow? where
union-find returns true. With the exception of the initial call to
interleave?, such calls can occur only rm + fm times (where,
again, m is the length of the longest vector, or two if there are no
vectors with more than two elements), since slow? does not recur
when union-find returns true. Thus, s ≤ rm + fm + 1. Since
r ≤ n and f ≤ 2(k0/kb)n, s ≤ nm + 2(k0/kb)nm + 1. By our
earlier reasoning in Section 3.2, we can replace the nm terms with

(define (interleave? x y k)
(let ([ht #f])
(define (call-union-find x y)
(unless ht (set! ht (make-eq-hashtable)))
(union-find ht x y))
(define (e? x y k)
(if (<= k 0)

(if (= k kb)
(fast? x y (random (* 2 k0)))
(slow? x y k))

(fast? x y k)))
(define (slow? x y k)
(cond
[(eq? x y) k]
[(pair? x)
(and (pair? y)
(if (call-union-find x y)

0
(let ([k (e? (car x) (car y) (- k 1))])
(and k (e? (cdr x) (cdr y) k)))))]

[(vector? x)
(and (vector? y)
(let ([n (vector-length x)])
(and (= (vector-length y) n)
(if (call-union-find x y)

0
(let f ([i 0] [k (- k 1)])
(if (= i n)

k
(let ([k (e? (vector-ref x i)

(vector-ref y i) k)])
(and k (f (+ i 1) k)))))))))]

[(string? x) (and (string? y) (string=? x y) k)]
[else (and (eqv? x y) k)]))

(define (fast? x y k)
(let ([k (- k 1)])
(cond
[(eq? x y) k]
[(pair? x)
(and (pair? y)
(let ([k (e? (car x) (car y) k)])
(and k (e? (cdr x) (cdr y) k))))]

[(vector? x)
(and (vector? y)
(let ([n (vector-length x)])
(and (= (vector-length y) n)
(let f ([i 0] [k k])
(if (= i n)

k
(let ([k (e? (vector-ref x i)

(vector-ref y i) k)])
(and k (f (+ i 1) k))))))))]

[(string? x) (and (string? y) (string=? x y) k)]
[else (and (eqv? x y) k)])))

(and (e? x y k) #t)))

Figure 7. The interleave? procedure

184

l (where, again, l is the total number of out-edges in the input), so
s ≤ 2(k0/kb + 1)l + 1.

(The bound on s is overly loose, since if all of the r calls really
result in s calls, there can be no f calls, and the second term for s
will be zero. Furthermore, we cannot reach the maximum number
of f calls without some of the f calls resulting directly in other f
calls, since at most n can result from r calls. This in turn further
reduces the possible number of s calls. So we believe a significantly
tighter bound on s should be possible, but at the time of this writing
we have not yet established one.)

The total number of calls t can be determined by summing the
three kinds of calls (calls to slow? where union-find returns
true, calls to slow? where union-find returns false, and calls to
fast?), i.e., t ≤ n + i2(k0/kb+)n + i2(k0/kb)l + 1. If we treat
empty vectors as atoms and ignore the special case where equal?
is called on atomic inputs, each node counts for at least one out-
edge, so n ≤ l, and t ≤ l + 2(k0/kb + 1)l + 2(k0/kb)l + 1. This
reduces to t ≤ 4(k0/kb)l + 1. Thus, since k0/kb is a constant,
we have the same asymptotic bound as for uf-equal?, but with a
larger constant factor.

The most expensive calls are the calls to slow? for which
union-find returns false and hence must merge equivalence
classes, and the number of such calls is still bounded by n. Thus
the additional calls are likely to be of a less expensive variety.

We now return to the case where k starts out at k0, as it does in
the call to interleave? from the interleave-equal? procedure
defined above. In this case, we can have at most k0 additional
calls to fast? and, because of that, at most k0l additional calls to
slow?, so t is now proportional to k0 rather than to k0/kb. While
we have been willing to accept a pre-check that has, effectively,
k0 additional calls to fast?, the k0l additional calls to slow? are
problematic, which in part leads to our final algorithm in Section 6.

5.2 Benchmarks
Again, benchmark results are shown in Figures 8 through 14 of
Section 6.2. The results show that the interleaved-equal? is
substantially faster than precheck/uf-equal? on most inputs
and especially so on larger lists and trees. It suffers relative to
precheck/uf-equal? on many of the cyclic inputs. Interestingly,
the disadvantage disappears for the union-exercising graphs shown
in Figure 14 as the number of nodes increases. Once it gets past
the initial fast? calls to the first slow? call, it remains in “slow”
mode for the duration and wastes no more time in “fast” mode.
This appears to justify our choice to return 0 rather than k when
union-find returns true.

6. Interleaved with pre-check
The final version of our algorithm is like the interleaved-equal?
algorithm except that it performs a pre-check identical to the one
performed by the precheck/uf-equal? algorithm described in
Section 4. The purpose of the pre-check is to allow us to start the
interleaving in “slow” mode to avoid the potential for the k0l ad-
ditional calls to slow? that can occur when the interleaved?
algorithm starts out in “fast” mode, as described at the end of Sec-
tion 5.1.

The precheck/interleave-equal? procedure defined below
implements the algorithm.

(define k0 400)
(define kb -40)
(define (precheck/interleave-equal? x y)
(let ([k (pre? x y k0)])
(and k (or (> k 0) (interleave? x y 0)))))

The pre? procedure is the same as before, but the version of
interleave? used by this algorithm (not shown) differs from the

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

1 10 100 1000 10000

r5rs
uf

precheck/uf
interleave

precheck/interleave

Figure 8. Lists of various lengths

one shown in Figure 7 in that the hash table is created immediately
upon entry to interleave?. There is no benefit for delaying its
creation in this case, since the initial value of k causes the algorithm
to start out in “slow” mode, where the hash table would be created
immediately anyway.

6.1 Analysis
The bound on the number of calls made during the interleaved
portion of this algorithm (starting in “slow” mode) is described in
Section 5.1; the pre-check adds only constant overhead.

6.2 Benchmarks
Figures 8 through 12 compare the algorithms defined in this paper
on various shapes and sizes of acyclic inputs. Figures 13 and 14
compare all but r5rs-equal? on cyclic inputs. All of the run times
are normalized to the uf-equal? run times, which we consider the
baseline for our comparison because it is the most straightforward
of the algorithms that work for all inputs.

While precheck/interleaved-equal? outperforms straight
interleaved-equal? in many cases, and its worst-case behavior
may be better, it is sometimes slower than interleaved-equal?,
generally for larger inputs for which the pre-check does not pay off.

In general, it appears that precheck/interleaved-equal?
achieves our goal of finding an algorithm that is within a small
constant factor of the faster of the simple tree equality and straight
union-find algorithms. This can be seen most clearly in Figure 15.
which shows the worst-case behavior for each of the tested al-
gorithms on each of the benchmarks. Each individual bar within
the set of bars for each algorithm shows the largest observed ra-
tio between the run time of the algorithm and the minimum of the
run times of the r5rs-equal? and uf-equal? algorithms on one
benchmark, with the benchmark that tests lists of various lengths
first followed by inverted lists, balanced binary trees, degenerate
dags, random dags, random graphs, and union-exercising graphs.
Bars for the last two are not shown for r5rs-equal?, since it can-
not handle arbitrary graphs, and the fourth bar for degenerate dags
understates the worst case for that algorithm, since it was not tested
on degenerate dags of depth 32 or 64.

As the figure illustrates, our algorithm is at worst about a factor
of six slower than the minimum of the simple tree-equality and
straight union-find algorithms. As can be seen in Figure 8, this
worst-case occurs when it is compared with the simple tree equality
algorithm on long lists. Each of the other algorithms exhibits poorer
worst-case behavior.

185

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

1 10 100 1000 10000

r5rs
uf

precheck/uf
interleave

precheck/interleave

Figure 9. Inverted lists of various lengths

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

1 2 4 8 16

r5rs
uf

precheck/uf
interleave

precheck/interleave

Figure 10. Balanced binary trees of various depths

 0

 1

 2

 3

 4

 5

 6

 7

 8

1 2 4 8 16 32 64

r5rs
uf

precheck/uf
interleave

precheck/interleave

Figure 11. Degenerate dags

 0

 1

 2

 3

 4

 5

 6

1 2 4 8 16

r5rs
uf
precheck/uf
interleave
precheck/interleave

Figure 12. Random dags

 0

 1

 2

 3

 4

 5

 6

 7

 8

1 2 3 4

uf
precheck/uf

interleave
precheck/interleave

Figure 13. Random graphs

 0

 1

 2

 3

 4

 5

 6

 7

 8

1 10 100 1000 10000

uf
precheck/uf

interleave
precheck/interleave

Figure 14. Union-exercising graphs

186

 0

 5

 10

 15

 20

 25

 30

r5rs uf precheck/uf interleave precheck/interleave

Figure 15. Worst-case performance of the algorithms.

7. Related work
Will Clinger proposed the R6RS equal? procedure in “SRFI 85: Re-
cursive Equivalence Predicates,” which refers to the predicate as
equiv? (2006). Our precheck/uf-equal? procedure is simi-
lar to his corrected reference implementation (2007) in that both
perform a bounded tree-equivalence pre-check followed by a DFA-
equivalence check. The reference implementation does not inter-
leave the tree-equality and DFA-equivalence checks, as our penul-
timate and final algorithms do.

Although the SRFI makes no specific claims about perfor-
mance, it is worth noting a few other problems that can cause it
to run multiple orders of magnitude slower than our algorithm and
thus make it unsuitable for use in an actual Scheme implementa-
tion. First, the reference implementation sets the pre-check bound
at 100000, while we set the bound at 400; this makes the reference
implementation somewhat faster for lists and trees with between
400 and 100000 nodes but slower for larger lists and trees and
much slower for small cyclic structures. Second, the reference im-
plementation pre-check does not decrement the bound for every
vector element; thus the effective bound on the pre-check is actu-
ally 100000 times the length of the longest vector, which is bad
if the inputs contain large vectors. Third, the reference implemen-
tation touches every element of a merged equivalence class when
two nonempty equivalence classes are combined, which introduces
a linear factor into each such operation and can thus cause equal?
to exhibit quadratic behavior. A comment in the reference imple-
mentation alludes to the third problem.

The reference implementation avoids entering some nodes into
its graph by looking ahead at the subnodes to see if they can be
compared without recursion. We tried this and found it not only
complicated the code but also performed worse even on inputs
contrived to make the look-ahead succeed, presumably due to the
additional checks required.

As an aside, the SRFI document claims that equal? (equiv?)
structures cannot be distinguished by mutation, but as we show in
Section 2, this is not the case, i.e., some equal? structures can be
distinguished by parallel mutations.

8. Conclusions
Any of the algorithms presented in this paper might be suitable
for a given application’s mix of inputs. A general-purpose library
equivalence predicate, like Scheme’s equal?, must, however, be
suitable (if not optimal) for all inputs. The final algorithm presented
in Section 6 appears to satisfy this requirement.

For the interleaved versions of the algorithm, it is worth consid-
ering placing an effective bound on the m factor in the number of
calls that fast? can make to slow? by calling union-find even in
“fast” mode after processing a certain number of vector elements,
if the algorithm has not yet found an unequal element. Based on
our current (loose) analysis, this would reduce the cost of the algo-
rithms when large vectors are present in the input, but whether this
would be beneficial in practice is not clear.

We leave for future work a proof of correctness and the estab-
lishment of tighter bounds for the final algorithm. It would also be
nice to benchmark real programs that use equal? for cyclic inputs,
but no such programs are likely to exist until R6RS achieves wider
adoption.

Acknowledgments
Aziz Ghuloum observed that only one cell need be allocated for
each pair of nodes being equivalenced when neither has been seen
before. This observation led directly to the further observation that
the existing cell can be reused when only one of a pair of nodes is
seen for the first time. Comments by the anonymous reviewers led
to several improvements in the presentation.

References
William D. Clinger. SRFI 85: Recursive equivalence predicates, March

2006. URL http://srfi.schemers.org/srfi-85/.
William D. Clinger. SRFI 85: Recursive equivalence predicates

(corrected reference implementation), December 2007. URL
http://srfi.schemers.org/srfi-85/post-mail-archive/
msg00001.html.

Zvi Galil and Giuseppe F. Italiano. Data structures and algorithms for
disjoint set union problems. ACM Comput. Surv., 23(3):319–344, 1991.
ISSN 0360-0300. doi: http://doi.acm.org/10.1145/116873.116878.

Benrard A. Galler and Michael J. Fisher. An improved equivalence algo-
rithm. Commun. ACM, 7(5):301–303, 1964. ISSN 0001-0782. doi:
http://doi.acm.org/10.1145/364099.364331.

Abdulaziz Ghuloum and R. Kent Dybvig. Generation-
friendly eq hash tables. In 2007 Workshop on Scheme
and Functional Programming, pages 27–35, 2007. URL
http://sfp2007.ift.ulaval.ca/programme.html.

John E. Hopcroft and R. M. Karp. A linear algorithm for
testing equivalence of finite automata. Technical Re-
port 71–114, Cornell University, Ithaca, NY, 1971. URL
http://ecommons.library.cornell.edu/handle/1813/5958.

Richard Kelsey, William Clinger, and Jonathan Rees (eds.). Revised5

report on the algorithmic language Scheme. Higher-Order and Symbolic
Computation, 11(1):7–105, 1998. Also appears in ACM SIGPLAN
Notices 33(9), September 1998.

Michael Sperber, R. Kent Dybvig, Matthew Flatt, and Anton van
Straaten (eds.). Revised6 report on the algorithmic language Scheme,
September 2007. URL http://www.r6rs.org/.

Robert E. Tarjan and Jan van Leeuwen. Worst-case analysis of set union
algorithms. J. ACM, 31(2):245–281, 1984. ISSN 0004-5411. doi:
http://doi.acm.org/10.1145/62.2160.

Robert Endre Tarjan. Efficiency of a good but not linear set union al-
gorithm. J. ACM, 22(2):215–225, 1975. ISSN 0004-5411. doi:
http://doi.acm.org/10.1145/321879.321884.

187

