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Abstract

Dynamic optimization of computer programs can dramatically improve their performance on a
variety of applications. This paper presents an efficient infrastructure for dynamic recompilation
that can support a wide range of dynamic optimizations including profile-driven optimizations.
The infrastructure allows any section of code to be optimized and regenerated on-the-fly, even
code for currently active procedures. The infrastructure incorporates a low-overhead edge-
count profiling strategy that supports first-class continuations and reinstrumentation of active
procedures. Profiling instrumentation can be added and removed dynamically, and the data
can be displayed graphically in terms of the original source to provide useful feedback to the
programmer.

Keywords: edge-count profiling, dynamic compilation, run-time code generation, basic block
reordering

1 Introduction

In the traditional model of program optimization and compilation, a program is optimized and
compiled once, prior to execution. This allows the cost of program optimization and compilation
to be amortized, possibly, over may program runs. On the other hand, it prevents the compiler
from exploiting properties of the program, its input, and its execution environment that can be
determined only at run time. Recent research has shown that dynamic compilation can dramatically
improve the performance of a wide range of applications including network packet demultiplexing,
sparse matrix computations, pattern matching, and mobile code [9, 7, 12, 15, 19, 23]. Dynamic
optimization works when a program is staged in such a way that the cost of dynamic recompilation
can be amortized over many runs of the optimized code [21].

This paper presents an infrastructure for dynamic recompilation of computer programs that
permits optimization of code at run time. The infrastructure allows any section of code to be
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optimized and regenerated on-the-fly, even the code for currently active procedures. In our Scheme-
based implementation of the infrastructure, the garbage collector is used to find and relocate all
references to recompiled procedures, including return addresses in the active portion of the control
stack.

Since many optimizations benefit from profiling information, we have included support for
profiling as an integral part of the recompilation infrastructure. Instrumentation for profiling can
be inserted or removed dynamically, again by regenerating code on-the-fly. A variant of Ball and
Larus’s low-overhead edge-count profiling strategy [2], extended to support first-class continuations
and reinstrumentation of active procedures, is used to obtain accurate execution counts for all basic
blocks in instrumented code. Although profiling overhead is fairly low, profiling is typically enabled
only for a portion of a program run, allowing subsequent execution to benefit from optizations
guided by the profiling information without the profiling overhead.

A side benefit of the profiling support is that profile data can be made available to the program-
mer, even as a program is executing. In our implementation, the programmer can view profile data
graphically in terms of the original source (possibly split over many files) to identify the “hot spots”
in a program. The source is color-coded according to execution frequency, and the programmer
can “zoom in” on portions of the program or portions of the frequency range.

As a proof of concept, we have used the recompilation infrastructure and profiling information
to support run-time reordering of basic blocks to reduce the number mispredicted branches and in-
struction cache misses, using a variant of Pettis and Hansen’s basic block-reordering algorithm [24].

The mechanisms described in this paper are directly applicable to garbage collected languages
such as Java, ML, Scheme, and Smalltalk in which all references to a procedure may be found and
relocated at run time. The mechanisms can be adapted to languages like C and Fortran in which
storage management is done manually by maintaining a level of indirection for all procedure entry
points and return addresses. Although a level of indirection is common for entry points to support
dynamic linking and shared libraries, the level of indirection for return addresses would be a cost
incurred entirely to support run-time recompilation.

Section 2 describes the edge-count profiling algorithm incorporated into the dynamic recom-
pilation infrastructure. Section 3 presents the infrastructure in detail and its proof-of-concept
application to basic-block reordering based on profile information. Section 4 gives some perfor-
mance data for the profiler and dynamic recompiler. Section 5 briefly discusses how profile data is
associated with source code and presented to the programmer. Section 6 describes related work.
Section 7 summarizes our results and discusses future work.

2 Edge-Count Profiling

This section describes a low-overhead edge-count profiling strategy based on one described by Ball
and Larus [2]. Like Ball and Larus’s, it minimizes the total number of profile counter increments
at run time. Unlike Ball and Larus’s, it supports first-class continuations and reinstrumentation
of active procedures. Additionally, our strategy employs a fast log-linear algorithm to determine
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(define remq
(lambda (x ls)

(cond
[(null? ls) ’()]
[(eq? (car ls) x ) (remq x (cdr ls))]
[else (cons (car ls) (remq x (cdr ls)))])))

bne arg2, nil, L1 B1
ld ac, empty-list B2
jmp ret

L1: ld ac, car-offset(arg2) B3
bne ac, arg1, L2
ld arg2, cdr-offset(arg2) B4
jmp reloc remq

L2: st arg2, 4(fp) B5
st ret, 0(fp)
ld arg2, cdr-offset(arg2)
ld ret, L3
add fp, 8, fp
jmp reloc remq

L3: sub fp, 8, fp B6
ld arg2, 4(fp)
ld ret, 0(fp)
ld arg1, ac
ld ac, car-offset(arg2)
sub ap, car-offset , xp
add ap, 8, ap
st ac, car-offset(xp)
st arg1, cdr-offset(xp)
ld ac, xp
jmp ret

> (remq ’b ’(b a b c d))
| (remq b (b a b c d))
| (remq b (a b c d))
| | (remq b (b c d))
| | (remq b (c d))
| | | (remq b (d))
| | | | (remq b ())
| | | | ()
| | | (d)
| | (c d)
| (a c d)
(a c d)

B1

B2 B3

B4 B5

B6Exit

1

1 3

3

3

2

2

5

6

Figure 1: remq source, sample trace, basic blocks, and control-flow graph with thick, uninstru-
mented edges from one of the twelve maximal spanning trees and encircled counts for the remaining,
instrumented edges

optimal counter placement. The recompiler uses the profiling information to guide optimization,
and it may also use the data to optimize counter placement, as described in Section 3. The
programmer can view the data graphically in terms of the original source to identify the “hot
spots” in a program, as described in Section 5.

Section 2.1 summarizes Ball and Larus’s optimal edge-count placement algorithm. Section 2.2
presents modifications to support first-class continuations and reinstrumentation of active proce-
dures. Section 2.3 describes our implementation.

2.1 Background

Figure 1 illustrates Ball and Larus’s optimal edge-count placement algorithm using a Scheme pro-
cedure that removes all occurrences of a given item from a list.

A procedure is represented by a control-flow graph composed of basic blocks and weighted
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(define fact
(lambda (n done)

(if (< n 2)
(done 1)
(∗ n (fact (− n 1) done)))))

bge arg1, fixnum 2, L1 B1
ld cp, arg2 B2
ld arg1, fixnum 1
jmp entry-offset(cp)

L1: st arg1, 4(fp) B3
st ret, 0(fp)
sub arg1, fixnum 1, arg1
add fp, 8, fp
ld ret, L2
jmp reloc fact

L2: sub fp, 8, fp B4
ld arg1, 4(fp)
ld ret, 0(fp)
ld arg2, ac
jmp reloc ∗

Figure 2: Source and basic blocks for fact , a variant of the factorial function which invokes the
done procedure to compute the value of the base case

edges. The assembly language instructions for the procedure are split into basic blocks, which
are sequential sections of code for which control enters only at the top and exits only from the
bottom. The branches at the bottoms of the basic blocks determine how the blocks are connected,
so they become the edges in the graph. The weight of each edge represents the number of times
the corresponding branch is taken.

The key property needed for optimal profiling is conservation of flow, i.e., the sum of the flow
coming into a basic block is equal to the sum of the flow going out of it. In order for the control-flow
graph to satisfy this property, it must represent all possible control paths. Consequently, a virtual
“exit” block is added so that all exits are explicitly represented as edges to the exit block. Entry
to the procedure is explicitly represented by an edge from the exit block to the entry block, and
the weight of this edge represents the number of times the procedure is invoked.

Because the augmented control-flow graph satisfies the conservation of flow property, it is not
necessary to instrument all the edges. Instead, the weights for many of the edges can be computed
from the weights of the other edges using addition and subtraction, provided that the uninstru-
mented edges do not form a cycle. The largest cycle-free set of edges is a spanning tree. Since
the sum of the weights of the uninstrumented edges represents the savings in counting, a maximal
spanning tree determines the inverse of the lowest-cost set of edges to instrument.

The edge from the exit block to the entry block does not correspond to an actual instruction in
the procedure, so it cannot be instrumented. Consequently, the maximal spanning tree algorithm
is seeded with this edge, and the resulting spanning tree is still maximal [2].
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> (call/cc
(lambda (k)

(fact 5 k)))
| (fact 5 #<proc>)
| | (fact 4 #<proc>)
| | | (fact 3 #<proc>)
| | | | (fact 2 #<proc>)
| | | | | (fact 1 #<proc>)
1

incorrect counts (in bold)
without an exit edge:

B1

B2 B3

Exit B4

01

1

0

0

1

all counts correct
with an exit edge:

B1

B2 B3

Exit B4

01

5

4

1 4

0

Figure 3: Trace and control-flow graphs illustrating nonlocal exit from fact with and without an
exit edge

2.2 Control-Flow Aberrations

The conservation of flow property is met only under the assumption that each procedure call
returns exactly once. First-class continuations, however, cause some procedure activations to exit
prematurely and others to be reinstated one or more times. Even when there are no continuations,
reinstrumenting a procedure while it has activations on the stack is problematic because some of
its calls have not returned yet.

Figure 2 gives a variant of the factorial function that illustrates the effects of nonlocal exit and
re-entry using Scheme’s call-with-current-continuation (call/cc) function [10].

Ball and Larus handle the restricted class of exit-only continuations, e.g., setjmp/longjmp in
C, by adding to each call block an edge pointing to the exit block. The weight of an exit edge
represents the number of times its associated call exits prematurely. Figure 3 demonstrates why
exit edges are needed for exit-only continuations. Ball and Larus measure the weights of exit edges
directly by modifying longjmp to account for aborted activations. We use a similar strategy, but
to avoid the linear stack walk overhead, we measure the weights indirectly by ensuring that exit
edges are on the spanning tree (see Section 2.3).

With fully general continuations, the weight of an exit edge represents the net number of
premature exits, and a negative weight indicates reinstatement. Figure 4 demonstrates the utility
of exit edges for continuations that reinstate procedure activations.

2.3 Implementation

To support profiling, the compiler organizes the generated code for each procedure into basic blocks
linked by edges that represent the flow of control within the procedure. It adds the virtual exit block
and corresponding edges and seeds the spanning tree with the edge from the exit block to the start
block as described in Section 2.1. It then computes the maximal spanning tree and assigns counters
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> (fact 4
(lambda (n)

(call/cc
(lambda (k)

(set! redo k)
(k n)))))

| (fact 4 #<proc>)
| | (fact 3 #<proc>)
| | | (fact 2 #<proc>)
| | | | (fact 1 #<proc>)
| | | | 1
| | | 2
| | 6
| 24
24
> (redo 2)
| | | | 2
| | | 4
| | 12
| 48
48

incorrect counts (in bold)
without an exit edge:

B1

B2 B3

Exit B4

1

1

6

6

7

6

all counts correct
with an exit edge:

B1

B2 B3

Exit B4

1

1 3

3

−3 6

6

Figure 4: Trace and control-flow graphs illustrating re-entry into fact with and without an exit
edge

to all edges not on the maximal spanning tree. Finally, the compiler inserts counter increments
into the generated code, placing them into existing blocks whenever possible.

For efficiency, our compiler uses the priority-first search algorithm for finding a maximal span-
ning tree [27]. Its worst-case behavior is O((E + B) log B), where B is the number of blocks and E

is the number of edges. Since each block has no more than two outgoing edges, E is O(B). Conse-
quently, the priority-first algorithm performs very well with a worst-case behavior of O(B log B).

Another benefit of this algorithm is that it adds uninstrumented edges to the tree in precisely
the reverse order for which their weights need to be computed using the conservation of flow
property. As a result, count propagation does not require a separate depth-first search as described
in [2]. Instead, the maximal spanning tree algorithm generates the list used to propagate the counts
quickly and easily. This list is especially important to the garbage collector, which must propagate
the counts of recompiled procedures (see Sections 3.1 and 3.3).

Figure 5 illustrates how our compiler minimizes the number of additional blocks needed to
increment counters by placing as many increments as possible in existing blocks. The increment
instructions refer to the edge data structures by actual address.

Instrumenting exit edges is more difficult because there are no branches in the procedure asso-
ciated with them. We solved this problem for the edge from the exit block to the entry block by
seeding the maximal spanning tree algorithm with this edge and proving that the resulting tree is
still maximal. Unfortunately, exit edges rarely lie on a maximal spanning tree because their weights
are usually zero. Consequently, there are two choices for measuring the weights of exit edges.

First, we could modify continuation invocation to update the weights directly. Ball and Larus
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If A’s only outgoing edge is e, the increment code
is placed in A.

B
einc e

A

If B’s only incoming edge is e (and B is not the
exit block), the increment code is placed in B.

B
e inc e

A

Otherwise, the increment code is placed in a new
block C that is spliced into the control-flow graph.

A
e

B

inc e
C

Figure 5: Efficient instrumentation of edge e from block A to block B

use this technique for exit-only continuations by incrementing the weights of the exit edges as-
sociated with each activation that will exit prematurely [2]. This approach would support fully
general continuations if it would also decrement the weights of the exit edges associated with each
activation that would be reinstated. The pointer to the exit edge would have to be stored either in
each activation record or in a static location associated with the return address.

Second, we could seed the maximal spanning tree algorithm with all the exit edges. The resulting
spanning tree might not be maximal, but it would be maximal among spanning trees that include
all the exit edges.

Our system’s segmented stack implementation supports constant-time continuation invoca-
tion [16, 5]. Implementing the first approach would destroy this property. Moreover, if any pro-
cedure is profiled, the system must traverse all activations to be sure it finds all profiled ones.
Although the second approach increases profiling overhead, it affects only profiled procedures, the
overhead is still reasonable, and the programmer may turn off accurate continuation profiling when
it is not needed. Consequently, we implemented only the second approach.

3 Dynamic Recompilation

This section presents the dynamic recompilation infrastructure. Section 3.1 gives an overview of
the recompilation process. Section 3.2 describes how the representation of procedures is modified
to accommodate dynamic recompilation. Section 3.3 describes how the garbage collector uses the
modified representation to replace code objects with recompiled ones. Section 3.4 presents the
recompilation process, which uses a variant of Pettis and Hansen’s basic block reordering algorithm
to reduce the number of mispredicted branches and instruction cache misses [24].
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3.1 Overview

Dynamic recompilation proceeds in three phases. First, the candidate procedures are identified,
either by the user or by a program that selects among all the procedures in the heap. Second, these
procedures are recompiled and linked to separate, new procedures. Third, the original procedures
are replaced by the new ones during the next garbage collection.

Because a procedure’s entry and return points may change during recompilation, the recompiler
creates a translation table that associates the entry- and return-point offsets of the original and the
new procedure and attaches it to the original procedure. The collector uses this table to relocate
call instructions and return addresses. Because the collector translates return addresses, procedures
can be recompiled while they are executing.

Before the next collection, only the original procedures are used. This invariant allows each orig-
inal procedure to share its control-flow graph and associated profile counts, if profiling is enabled,
with the new procedure. Because the new procedure’s maximal spanning tree may be different
from the original’s, the new procedure may increment different counts. The collector accounts for
the difference by propagating the counts of the original procedure so that the new procedure starts
with a complete set of accurate counts.

3.2 Representation

Figure 6 illustrates how our representation of procedures, highlighting the minor changes needed to
support dynamic recompilation. A more detailed description of our object representation is given
elsewhere [13].

Procedures are represented as closures and code objects. A closure is a variable-length array
whose first element contains the address of the procedure’s anonymous entry point and whose
remaining elements contain the procedure’s free variables. The anonymous entry point is the first
instruction of the procedure’s machine code, which is stored in a code object. A code object has
a six-word header before the machine code. The info field stores the code object’s block structure
and debugging information.

The relocation table is used by the garbage collector to relocate items stored in the instruction
stream. Each item has an entry that specifies the item’s offset within the code stream (the code
offset), the offset from the item’s address to the address actually stored in the code stream (the
item offset), and how the item is encoded in the code stream (the type). The code pointer is used
to relocate items stored as relative addresses.

Because procedure entry points may change during recompilation, relocation entries for calls use
the long format so that the translated offset cannot exceed the field width. Consequently, the long
format provides a convenient location for the “d” bit, which indicates whether an entry corresponds
to a call instruction. Use of the long format does not significantly increase the table size because
calls account for a minority of relocation entries. Because short entries cannot describe calls, they
need not be checked.

Three of the code object’s type bits are used to encode the status of a code object. The first
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Figure 6: Representation of closures, code objects, and stacks with the infrastructure for dynamic
recompilation highlighted

bit, set by the recompiler, indicates whether the code object has been recompiled to a new one and
is thus obsolete. Since an obsolete code object will not be copied during collection, its relocation
table is no longer needed. Therefore, its reloc field is used to point to the translation table instead.
The list of original/new offset pairs are sorted by original offset to enable fast binary searching
during relocation.

The second bit, denoted by “n” in the figure, indicates whether the code object is new. This
bit, set by the recompiler and cleared by the collector, is used to prevent a new code object from
being recompiled before the associated obsolete one has been eliminated. The third bit, denoted
by “b” in the figure, serves a similar purpose. It indicates whether an old code object is busy in
that it is either being or has been recompiled. This bit is used to prevent multiple recompilation
of the same code object. The recompiler sets this bit at the beginning of recompilation. Because
the recompiler may trigger a garbage collection before it creates a new code object and marks the
original one obsolete, this bit must be preserved by the collector. It is possible to recompile a code
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object multiple times; however, each subsequent recompilation must occur after the code object
has been recompiled and collected. (It would be possible to relax this restriction.)

In order to support multiple return values, first-class continuations, and garbage collection
efficiently, four words of data are placed in the instruction stream immediately before the single-
value return point from each nontail call [16, 1, 5]. The live mask is a bit vector describing which
frame locations contain live data. The code pointer is used to find the code object associated with
a given return address. The frame size is used during garbage collection, continuation invocation,
and debugging to walk down a stack one frame at a time.

3.3 Collection

Only a few modifications are necessary for the garbage collector to support dynamic recompilation.
The primary change involves how a code object is copied. If the obsolete bit is clear, the code object
and associated relocation table are copied as usual, but the new bit of the copied code object’s type
field is cleared if set.

If the obsolete bit is set, the code object is not copied at all. Instead, the pointer to the new
code object is relocated and stored as the forwarding address for the obsolete code object so that
all other pointers to the obsolete code object will be forwarded to the new one. Moreover, if the
obsolete code object is instrumented for profiling, the collector propagates the counts so that they
remain accurate when the new code object increments a possibly different subset of the counts. The
list of edge/block pairs used for propagation is found in the info structure. Since the propagation
occurs during collection, some of the objects in the list may be forwarded, so the collector must
check for pointers to forwarded objects as it propagates the counts.

The translation table is used to relocate call instructions and return addresses. Call instructions
are found only in code objects, so they are handled when code objects are swept. The “d” bit of
long-format relocation entries identifies the candidates for translation. Return addresses are found
only in stacks, so they are handled when continuations are swept.

Since our collector is generational, we must address the problem of potential cross-generational
pointers from obsolete to new code objects. Our segmented heap model allows us to allocate new
objects in older generations when necessary [13]; thus, we always allocate a new code object in the
same generation as the corresponding obsolete code object. Otherwise, we would have to add the
pointer to our remembered set and promote the new code object to the older generation during
collection.

3.4 Block Reordering

To demonstrate the dynamic recompilation infrastructure, we have applied it to the problem of
basic-block reordering. We use a variant of Pettis and Hansen’s basic block reordering algorithm
to reduce the number of mispredicted branches and instruction cache misses [24]. We also use the
edge-count profile data to decrease profiling overhead by re-running the maximal spanning tree
algorithm to improve counter placement.
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If both edges point to
blocks in the same chain,
no preferences are added.

If x ≥ y, A should come
before B with weight
x− y. Otherwise, B
should come before A

with weight y − x.

If x ≥ y, B should come
before A before C with

weight x− y. Otherwise, C
should come before A before

B with weight y − x.

x

y

A

B

x

y C

B

A

Figure 7: Adding branch prediction preferences for architectures that predict all backward condi-
tional branches taken and all forward conditional branches not taken

The block reordering algorithm proceeds in two steps. First, blocks are combined into chains
according to the most frequently executed edges to reduce the number of instruction cache misses.
Second, the chains are ordered to reduce the number of mispredicted branches.

Initially, every block comprises a chain of one block, itself. Using a list of edges sorted by
decreasing weight, distinct chains A and B are combined when an edge’s source block is at the tail
of A and its sink block is at the head of B. When all the edges have been processed, a set of chains
is left.

The algorithm places ordering preferences on the chains based on the conditional branches
emitted from the blocks within the chains and the target architecture’s branch prediction strategy.
Blocks with two outgoing edges always generate a conditional branch for one of the edges, and
they generate an unconditional branch when the other edge does not point to the next block in the
chain. Figure 7 illustrates how the various conditional branch possibilities generate preferences for
a common prediction strategy. The preferences are implemented using a weighted directed graph
with nodes representing chains and edges representing the “should come before” relation.

As each block with two outgoing edges is processed, its preferences (if any) are added to the
weights of the graph. Suppose there is an edge of weight x from chain A to B and an edge of weight
y from chain B to A, and x > y. The second edge is removed, and the first edge’s weight becomes
x−y, so that there is only one positive-weighted edge between any two nodes. A depth-first search
then topologically sorts the chains, omitting edges that cause cycles. The machine code for the
chains is placed in a new code object, and the old code object is marked obsolete and has its reloc
field changed to point to the translation table.
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Benchmark Lines Description
compiler 35,901 Chez Scheme 5.0g recompiling itself

softscheme 10,073 Andrew Wright’s soft typer [29] checking match
ddd 9,578 Digital Design Derivation System 1.0 [4] deriving hardware

for a Scheme machine [6]
similix 7,305 self-application of the Similix 5.0 partial evaluator [3]
nucleic 3,475 3-D structure determination of a nucleic acid
slatex 2,343 SLaTeX 2.2 typesetting its own manual
maze 730 Hexagonal maze maker by Olin Shivers

earley 655 Earley’s parser by Marc Feeley
peval 639 Feeley’s simple Scheme partial evaluator

Table 1: Description of benchmarks

Initial Count Placement Optimal Count Placement Optimal Count Placement
Initial Block Ordering Initial Block Ordering Block Reordering

Benchmark Run Time Compile Time Run Time Recompile Time Run Time Recompile Time
compiler 1.75 1.29 0.90 0.15 0.92 0.14

softscheme 1.56 1.26 1.31 0.09 1.30 0.10
ddd 1.09 1.31 1.02 0.18 1.00 0.21

similix 1.57 1.23 1.33 0.26 1.31 0.28
nucleic 1.24 1.03 1.21 0.05 1.06 0.05
slatex 1.18 1.20 1.09 0.15 1.05 0.16
maze 1.37 1.23 1.15 0.10 1.10 0.11

earley 1.07 1.28 0.96 0.11 0.92 0.11
peval 1.61 1.31 1.30 0.15 1.17 0.15

Average 1.38 1.24 1.14 0.14 1.09 0.15

Table 2: Run-time and (re)compile-time costs of edge-count profiling relative to a base compiler
that does not instrument for profiling or reorder basic blocks

4 Performance

We used the set of benchmarks listed in Table 1 to assess both compile-time and run-time per-
formance of the dynamic recompiler and profiler. All measurements were taken on a DEC Alpha
3000/600 running Digital UNIX V4.0A.

Table 2 shows the cost of profiling and recompiling each of the benchmark programs. Initial
instrumentation has an average run-time overhead of 38% and an average compile-time overhead of
24%. Without block reordering, optimal count placement reduces the average run-time overhead to
14%, and the average recompile time is only 14% of the base compile time. With block reordering,
the average run-time overhead drops to 9%, while the average recompile time increases very slightly
to 15%.

The reduction of profiling overhead from 38% to 14% is quite respectable and shows that the
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Mispredicted Branches Unconditional Branches Reordered Performance
Benchmark Ideal Reordered Initial Reordered Initial Run Time Recompile Time

compiler 0.06 0.09 0.72 0.09 0.11 0.93 0.14
softscheme 0.07 0.07 0.38 0.01 0.03 0.98 0.07

ddd 0.04 0.04 0.62 0.00 0.13 0.98 0.12
similix 0.07 0.07 0.61 0.00 0.02 0.96 0.17
nucleic 0.01 0.02 0.97 0.00 0.01 0.94 0.03
slatex 0.02 0.03 0.77 0.04 0.27 0.99 0.11
maze 0.10 0.10 0.79 0.09 0.10 0.98 0.07

earley 0.20 0.24 0.65 0.15 0.19 0.77 0.08
peval 0.11 0.11 0.66 0.00 0.06 0.87 0.09

Average 0.08 0.09 0.69 0.04 0.10 0.93 0.10

Table 3: Effectiveness of dynamic block reordering on reducing the number of mispredicted branches
and unconditional branches, the relative run time of the recompiled code, and the recompile time
relative to the base compile time. The number of unconditional branches is given relative to the
number of conditional branches. Run-time checks for conditions such as heap and stack overflow
account for one third to one half of the conditional branches. For simplicity, these checks were
designed to test and branch around the code that handles the condition. Because these tests almost
always fail, the mispredicted forward branches inflate the initial misprediction rate. Factoring them
out yields an initial misprediction rate of about 50%.

optimal counter placement can be an effective tool for use in long program runs intended to gather
precise overall profiling information. The block reordering optimization does not, however, fully
compensate for the profiling overhead, and even if additional run-time optimizations justified by the
profiling information reduce the overhead still further, it is not clear that profiling will pay for itself
in production runs if left enabled indefinitely. This suggests a strategy for dynamic optimization in
which a program is dynamically optimized and profiling instrumentation removed after an initial
portion of a program run during which profiling information is gathered.

To assess the effectiveness of the block reordering algorithm, we measured the number of mis-
predicted conditional branches and the number of unconditional branches. The Alpha architecture
encourages hardware and compiler implementors to predict backward conditional branches taken
and forward conditional branches not taken [28]. Current Alpha implementations use this static
model as a starting point for dynamic branch prediction. We computed the mispredicted branch
percentage using the static model as a metric for determining the effectiveness of the block re-
ordering algorithm. Table 3 gives the results. Like Pettis and Hansen’s algorithm, ours achieves
near-optimal misprediction rates, significantly reduces the number of unconditional branches, and
provides a modest 7% reduction in run time. Our algorithm is also fast, for the average recompile
time is just 10% of the base compile time. Because the Alpha performs dynamic branch prediction,
the 7% reduction in run time is likely due mostly to reduction in instruction cache misses.

5 Graphical Display of Profile Information

Although the profile data is intended primarily for use by the dynamic recompiler, it is also useful for
providing feedback to the programmer. In order to provide useful feedback, some way of associating
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profile data with source code is needed. The compiler attaches a source record containing a source
file descriptor and a byte offset from the beginning of the file to each source expression as it is
read. The compiler propagates these source records through the intermediate compilation passes
and associates each source record with an appropriate basic block. Within the representation of
a basic block, each source record associated with the block is included within a special “source”
pseudo instruction. These pseudo instructions do not result in the generation of any additional
machine code.

The default location for an expression’s source record is in the basic block that begins its
evaluation. For procedure calls, however, the source expression corresponds to the basic block
that makes the call. In most situations, the count for this block is the same as the count for the
block that begins to evaluate the entire call expression. A difference arises when continuations are
involved, and in this case we have found it more useful to know how many times the call is actually
made.

Each constant and variable reference occurs in just one basic block, so the source record goes
there. When a constant or reference occurs in nontail position, its count can usually be determined
from the count of the closest enclosing expression. An exception arises when the constant or
reference occurs as the “then” or “else” part of an if expression in nontail position. Consequently,
the compiler generates source instructions for constants and references only when they occur in tail
position or as the “then” or “else” part of an if expression. By eliminating the source instructions
for the remaining cases, the compiler significantly reduces the number of source records stored in
basic blocks without sacrificing useful information.

To display the block counts in terms of the original source, we follow three steps. First, we
determine the count for each block by summing the weights of all its outgoing edges. Second, we
build an association list of source expressions and block counts from the source records stored in
each basic block. Third, we use this list to determine the source files that must be displayed by
the graphical user interface and to guide the color-coding of the code according to the counts. The
programmer can “zoom in” on portions of the program or portions of the frequency range and can
also click on an expression to obtain its precise count. Figure 8 gives an example.

The programmer is not limited to displaying information for one procedure at a time. The data
for all profiled procedures can be displayed at one time with a separate window for each source file.
The data is sorted by frequency to help programmers identify hot spots. This technique proved
useful in profiling the profiler itself, helping us identify inefficiencies in the maximal spanning tree
and block look-up algorithms.

6 Related Work

Our edge-count profiling algorithm is based one described by Ball and Larus [2], who applied their
algorithm in a traditional static compilation environment. We have extended their algorithm to
support first-class procedures and reinstrumentation of active procedures. We have also identified
an algorithm for determining optimal counter placement that is faster and eliminates the need for
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Figure 8: A section of a lexical scanner displayed using darker shades for more frequently executed
code and lighter shades for less frequently executed codes. Note to the program committee: We
hope to improve the translation from color to grey scales for the final paper.

a separate depth-first search for count propagation.
We have used Pettis and Hansen’s intraprocedural block-reordering strategy with only minor

modifications to apply it in the context of dynamic recompilation. Samples [26] explores a similar
intraprocedural algorithm that reduces instruction cache miss rates by up to 50%. Pettis and
Hansen [24] also describe an interprocedural algorithm that places procedures in memory such that
those that execute close together in time will also be close together in memory. Since determining
the optimal ordering is NP-complete, they use a greedy “closest is best” strategy.

Several recent research projects have focused on light-weight run-time code generation [7, 14,
19, 20, 25], with code generation costs on the order of five to 100 instructions executed for each
instruction generated. Although the overhead inherent in our model is greater, the potential benefits
are greater as well.

Little attention has previously been paid to profile-driven dynamic optimizations, with the no-
table exception of work on Self [8, 17]. This work uses a specialized form of profiling to guide
generation of special-purpose code to avoid generic dispatch overhead. Our infrastructure incorpo-
rates a more general profiling strategy that is not targeted to any particular optimization technique,
although we have so far applied it only to the limited problem of block reordering.

Keppel has investigated the application of run-time code generation to value-specific optimiza-
tions, in which code is special-cased to particular input values [18]. Although we have so far focused
on profile-driven optimizations, we believe that our infrastructure is well suited to value-specific

15



optimizations as well.

7 Conclusions

We have described an efficient infrastructure for dynamic recompilation that incorporates a low-
overhead edge-count profiling strategy supporting first-class continuations and reinstrumentation
of active procedures. We have shown how the profile data can be used to improve performance
by reordering basic blocks and optimizing counter placement. In addition, we have explained how
the profile data can be associated with the original source to provide graphical feedback to the
programmer.

The mechanisms described in this paper have all been implemented and incorporated into Chez

Scheme. The recompiler can profile and regenerate all code in the system, including itself, as
it runs. Performance results show that the average run-time profiling overhead is initially 38%
and decreases significantly with recompilation. The average compile-time profiling overhead is
24%, and the average recompile time relative to the base compile time is 10% without profiling
instrumentation and 14–15% with profiling instrumentation. The block-reordering algorithm is fast
and effective at reducing the number of mispredicted branches and unconditional branches.

The techniques and algorithms are directly applicable to garbage collected languages such as
Java, ML, Scheme, and Smalltalk, and can be adapted to other languages as described in Section 1.

Dynamic recompilation need not be limited to low-level optimizations such as block reordering.
A promising area of future work involves associating the profile data with earlier passes of the
compiler so that higher-level optimizations can take advantage of the information. For example,
register allocation, flow analysis, and inlining could benefit from profile data. An unoptimized
active code segment with no analogue in the optimized version of a program, such as code for an
active procedure that has been inlined at its call sites, can be retained by the system until no longer
needed. This will, in fact, occur naturally in garbage collected systems.

Another area of future work involves a generalization of edge-count profiling to measure other
dynamic program characteristics such as the number of procedure calls, variable references, and
so forth. For example, profile data can be used to measure how many times a procedure is called
versus how many times it is created, and this ratio could be used to guide lambda lifting [11].
Combined with an estimate of the cost of generating code for the procedure, this ratio could also
help determine when run-time code generation [22] would be profitable. Our system can also be
extended to recompile (specialize) a closure based on the run-time values of its free variables.
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